Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Guo-Qing Jiang, Xue-Fang Gu, Yue-Hua Zhang and Yu-Jun Shi*

College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China

Correspondence e-mail: jgq3518@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.031$
$w R$ factor $=0.068$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(phenoxyacetato-кO)bis[2-(2-pyridyl)-ethanol- $\kappa^{2} N, O$]cobalt(II)

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\right]$, crystallizes as a centrosymmetric mononuclear $\mathrm{Co}^{\mathrm{II}}$ complex with two phenoxyacetate and two 2-(2-pyridyl)ethanol molecules acting as ligands. The phenoxyacetate anion binds to the $\mathrm{Co}^{\mathrm{II}}$ ion through one carboxylate O atom, and the 2-(2-pyridyl)ethanol molecule acts in a chelating mode. The molecular structure of the complex is stabilized by two intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The rational design, synthesis and characterization of novel supramolecular frameworks are of great current interest. One of the greatest challenges in this area is the construction of porous materials from metal ions and organic ligands as building blocks (Yaghi et al., 1997). As part of our search for new porous metal-organic frameworks, we are studying complexes of transition metals with phenoxyacetate ligands (Jiang et al., 2005, 2006). We report here the crystal structure of the title compound, (I), which is a mononuclear phenoxyacetate $\mathrm{Co}^{\mathrm{II}}$ complex with 2-(2-pyridyl)ethanol as a co-ligand.

(I)

The mononuclear complex molecule of (I) is located on an inversion center (Fig. 1). The $\mathrm{Co}^{\text {II }}$ atom shows a slightly distorted octahedral geometry and is coordinated by two carboxylate O atoms from the two coordinating phenoxyacetate groups and by two O and two N atoms from the two bidentate 2-(2-pyridyl)ethanol ligands. Bond distances involving the $\mathrm{Co}^{\mathrm{II}}$ atom are listed in Table 1. There are two intramolecular hydrogen bonds linking the hydroxy and carboxylate groups within the molecule of (I) (Table 2). Interligand $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions with $\mathrm{H} \cdots \mathrm{O}$ distances in the range $2.38-2.61 \AA$ connect molecules of (I) into a threedimensional framework (Fig. 2).

Experimental

$\mathrm{Co}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{OPh}\right)_{2}$ was synthesized by mixing solutions of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mmol}, 2.38 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and $\mathrm{NaO}_{2} \mathrm{CCH}_{2} \mathrm{OPh}$ $(20 \mathrm{mmol}, 3.48 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{ml})$. The pink powder that precipitated was collected by filtration, washed with water and dried in vacuo. Complex (I) was prepared by the reaction of $\mathrm{Co}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{OPh}\right)_{2}$
($0.2 \mathrm{mmol}, 0.072 \mathrm{~g}$) in $\mathrm{MeOH}(10 \mathrm{ml})$ and 2-(2-pyridyl)ethanol $(0.4 \mathrm{mmol}, 0.05 \mathrm{~g})$ under reflux for 30 min . The resulting solution was cooled and filtered. The filtrate was allowed to stand for a few days at room temperature until light-pink crystals were obtained.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\right]$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.449 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \mu=0.67 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Prism, pink } \\
& 0.18 \times 0.13 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.881, T_{\text {max }}=0.935$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.068$
$S=0.96$
7496 measured reflections 2732 independent reflections 2134 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.047$
$\theta_{\text {max }}=26.0^{\circ}$

2732 reflections
190 parameters

> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0276 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.33$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Co} 1-\mathrm{O} 2$	$2.0936(12)$	$\mathrm{Co} 1-\mathrm{N} 1$	$2.1548(14)$
$\mathrm{Co} 1-\mathrm{O} 4$	$2.1000(12)$		

Symmetry code: (i) $-x,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.870(19)$	$1.71(2)$	$2.5643(18)$	$166.2(19)$

Symmetry code: (i) $-x,-y,-z+1$.

Carbon-bound H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ $=0.97 \AA$ for methylene and $0.93 \AA$ for aromatic, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The hydroxyl H atom was positioned geometrically and freely refined.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. Unlabelled atoms and those with the suffix i are related to labelled atoms by the symmetry operation ($-x,-y, 1-z$).

Figure 2
Packing diagram for (I), viewed along [100]. All H atoms have been omitted for clarity. Blue dashed lines indicate $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of JiangSu Education Department (grant No. 06KJD150154).

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Jiang, G.-Q., Li, Y.-Z., Hua, W.-J., Song, Y., Bai, J.-F., Li, S.-H., Scheer, M. \& You, X.-Z. (2006). CrystEngComm, 8, 384-387.
Jiang, G.-Q., Li, Y.-Z., Wang, S.-N., Li, F.-F., Xu, Z.-J. \& Bai, J.-F. (2005). Acta Cryst. E61, m1517-m1519.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yaghi, O. M., Davis, C. E., Li, G. \& Li, H. L. (1997). J. Am. Chem. Soc. 119, 2861-2868.

[^0]: © 2006 International Union of Crystallography All rights reserved

